# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import logging as std_logging
import re
from typing import (
    Callable,
    Dict,
    Mapping,
    MutableMapping,
    MutableSequence,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
)

from google.api_core import exceptions as core_exceptions
from google.api_core import gapic_v1
from google.api_core import retry_async as retries
from google.api_core.client_options import ClientOptions
from google.auth import credentials as ga_credentials  # type: ignore
from google.oauth2 import service_account  # type: ignore

from google.ai.generativelanguage_v1beta3 import gapic_version as package_version

try:
    OptionalRetry = Union[retries.AsyncRetry, gapic_v1.method._MethodDefault, None]
except AttributeError:  # pragma: NO COVER
    OptionalRetry = Union[retries.AsyncRetry, object, None]  # type: ignore

from google.longrunning import operations_pb2  # type: ignore

from google.ai.generativelanguage_v1beta3.types import safety, text_service

from .client import TextServiceClient
from .transports.base import DEFAULT_CLIENT_INFO, TextServiceTransport
from .transports.grpc_asyncio import TextServiceGrpcAsyncIOTransport

try:
    from google.api_core import client_logging  # type: ignore

    CLIENT_LOGGING_SUPPORTED = True  # pragma: NO COVER
except ImportError:  # pragma: NO COVER
    CLIENT_LOGGING_SUPPORTED = False

_LOGGER = std_logging.getLogger(__name__)


class TextServiceAsyncClient:
    """API for using Generative Language Models (GLMs) trained to
    generate text.
    Also known as Large Language Models (LLM)s, these generate text
    given an input prompt from the user.
    """

    _client: TextServiceClient

    # Copy defaults from the synchronous client for use here.
    # Note: DEFAULT_ENDPOINT is deprecated. Use _DEFAULT_ENDPOINT_TEMPLATE instead.
    DEFAULT_ENDPOINT = TextServiceClient.DEFAULT_ENDPOINT
    DEFAULT_MTLS_ENDPOINT = TextServiceClient.DEFAULT_MTLS_ENDPOINT
    _DEFAULT_ENDPOINT_TEMPLATE = TextServiceClient._DEFAULT_ENDPOINT_TEMPLATE
    _DEFAULT_UNIVERSE = TextServiceClient._DEFAULT_UNIVERSE

    model_path = staticmethod(TextServiceClient.model_path)
    parse_model_path = staticmethod(TextServiceClient.parse_model_path)
    common_billing_account_path = staticmethod(
        TextServiceClient.common_billing_account_path
    )
    parse_common_billing_account_path = staticmethod(
        TextServiceClient.parse_common_billing_account_path
    )
    common_folder_path = staticmethod(TextServiceClient.common_folder_path)
    parse_common_folder_path = staticmethod(TextServiceClient.parse_common_folder_path)
    common_organization_path = staticmethod(TextServiceClient.common_organization_path)
    parse_common_organization_path = staticmethod(
        TextServiceClient.parse_common_organization_path
    )
    common_project_path = staticmethod(TextServiceClient.common_project_path)
    parse_common_project_path = staticmethod(
        TextServiceClient.parse_common_project_path
    )
    common_location_path = staticmethod(TextServiceClient.common_location_path)
    parse_common_location_path = staticmethod(
        TextServiceClient.parse_common_location_path
    )

    @classmethod
    def from_service_account_info(cls, info: dict, *args, **kwargs):
        """Creates an instance of this client using the provided credentials
            info.

        Args:
            info (dict): The service account private key info.
            args: Additional arguments to pass to the constructor.
            kwargs: Additional arguments to pass to the constructor.

        Returns:
            TextServiceAsyncClient: The constructed client.
        """
        return TextServiceClient.from_service_account_info.__func__(TextServiceAsyncClient, info, *args, **kwargs)  # type: ignore

    @classmethod
    def from_service_account_file(cls, filename: str, *args, **kwargs):
        """Creates an instance of this client using the provided credentials
            file.

        Args:
            filename (str): The path to the service account private key json
                file.
            args: Additional arguments to pass to the constructor.
            kwargs: Additional arguments to pass to the constructor.

        Returns:
            TextServiceAsyncClient: The constructed client.
        """
        return TextServiceClient.from_service_account_file.__func__(TextServiceAsyncClient, filename, *args, **kwargs)  # type: ignore

    from_service_account_json = from_service_account_file

    @classmethod
    def get_mtls_endpoint_and_cert_source(
        cls, client_options: Optional[ClientOptions] = None
    ):
        """Return the API endpoint and client cert source for mutual TLS.

        The client cert source is determined in the following order:
        (1) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is not "true", the
        client cert source is None.
        (2) if `client_options.client_cert_source` is provided, use the provided one; if the
        default client cert source exists, use the default one; otherwise the client cert
        source is None.

        The API endpoint is determined in the following order:
        (1) if `client_options.api_endpoint` if provided, use the provided one.
        (2) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is "always", use the
        default mTLS endpoint; if the environment variable is "never", use the default API
        endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise
        use the default API endpoint.

        More details can be found at https://google.aip.dev/auth/4114.

        Args:
            client_options (google.api_core.client_options.ClientOptions): Custom options for the
                client. Only the `api_endpoint` and `client_cert_source` properties may be used
                in this method.

        Returns:
            Tuple[str, Callable[[], Tuple[bytes, bytes]]]: returns the API endpoint and the
                client cert source to use.

        Raises:
            google.auth.exceptions.MutualTLSChannelError: If any errors happen.
        """
        return TextServiceClient.get_mtls_endpoint_and_cert_source(client_options)  # type: ignore

    @property
    def transport(self) -> TextServiceTransport:
        """Returns the transport used by the client instance.

        Returns:
            TextServiceTransport: The transport used by the client instance.
        """
        return self._client.transport

    @property
    def api_endpoint(self):
        """Return the API endpoint used by the client instance.

        Returns:
            str: The API endpoint used by the client instance.
        """
        return self._client._api_endpoint

    @property
    def universe_domain(self) -> str:
        """Return the universe domain used by the client instance.

        Returns:
            str: The universe domain used
                by the client instance.
        """
        return self._client._universe_domain

    get_transport_class = TextServiceClient.get_transport_class

    def __init__(
        self,
        *,
        credentials: Optional[ga_credentials.Credentials] = None,
        transport: Optional[
            Union[str, TextServiceTransport, Callable[..., TextServiceTransport]]
        ] = "grpc_asyncio",
        client_options: Optional[ClientOptions] = None,
        client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO,
    ) -> None:
        """Instantiates the text service async client.

        Args:
            credentials (Optional[google.auth.credentials.Credentials]): The
                authorization credentials to attach to requests. These
                credentials identify the application to the service; if none
                are specified, the client will attempt to ascertain the
                credentials from the environment.
            transport (Optional[Union[str,TextServiceTransport,Callable[..., TextServiceTransport]]]):
                The transport to use, or a Callable that constructs and returns a new transport to use.
                If a Callable is given, it will be called with the same set of initialization
                arguments as used in the TextServiceTransport constructor.
                If set to None, a transport is chosen automatically.
            client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]):
                Custom options for the client.

                1. The ``api_endpoint`` property can be used to override the
                default endpoint provided by the client when ``transport`` is
                not explicitly provided. Only if this property is not set and
                ``transport`` was not explicitly provided, the endpoint is
                determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment
                variable, which have one of the following values:
                "always" (always use the default mTLS endpoint), "never" (always
                use the default regular endpoint) and "auto" (auto-switch to the
                default mTLS endpoint if client certificate is present; this is
                the default value).

                2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable
                is "true", then the ``client_cert_source`` property can be used
                to provide a client certificate for mTLS transport. If
                not provided, the default SSL client certificate will be used if
                present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not
                set, no client certificate will be used.

                3. The ``universe_domain`` property can be used to override the
                default "googleapis.com" universe. Note that ``api_endpoint``
                property still takes precedence; and ``universe_domain`` is
                currently not supported for mTLS.

            client_info (google.api_core.gapic_v1.client_info.ClientInfo):
                The client info used to send a user-agent string along with
                API requests. If ``None``, then default info will be used.
                Generally, you only need to set this if you're developing
                your own client library.

        Raises:
            google.auth.exceptions.MutualTlsChannelError: If mutual TLS transport
                creation failed for any reason.
        """
        self._client = TextServiceClient(
            credentials=credentials,
            transport=transport,
            client_options=client_options,
            client_info=client_info,
        )

        if CLIENT_LOGGING_SUPPORTED and _LOGGER.isEnabledFor(
            std_logging.DEBUG
        ):  # pragma: NO COVER
            _LOGGER.debug(
                "Created client `google.ai.generativelanguage_v1beta3.TextServiceAsyncClient`.",
                extra={
                    "serviceName": "google.ai.generativelanguage.v1beta3.TextService",
                    "universeDomain": getattr(
                        self._client._transport._credentials, "universe_domain", ""
                    ),
                    "credentialsType": f"{type(self._client._transport._credentials).__module__}.{type(self._client._transport._credentials).__qualname__}",
                    "credentialsInfo": getattr(
                        self.transport._credentials, "get_cred_info", lambda: None
                    )(),
                }
                if hasattr(self._client._transport, "_credentials")
                else {
                    "serviceName": "google.ai.generativelanguage.v1beta3.TextService",
                    "credentialsType": None,
                },
            )

    async def generate_text(
        self,
        request: Optional[Union[text_service.GenerateTextRequest, dict]] = None,
        *,
        model: Optional[str] = None,
        prompt: Optional[text_service.TextPrompt] = None,
        temperature: Optional[float] = None,
        candidate_count: Optional[int] = None,
        max_output_tokens: Optional[int] = None,
        top_p: Optional[float] = None,
        top_k: Optional[int] = None,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> text_service.GenerateTextResponse:
        r"""Generates a response from the model given an input
        message.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1beta3

            async def sample_generate_text():
                # Create a client
                client = generativelanguage_v1beta3.TextServiceAsyncClient()

                # Initialize request argument(s)
                prompt = generativelanguage_v1beta3.TextPrompt()
                prompt.text = "text_value"

                request = generativelanguage_v1beta3.GenerateTextRequest(
                    model="model_value",
                    prompt=prompt,
                )

                # Make the request
                response = await client.generate_text(request=request)

                # Handle the response
                print(response)

        Args:
            request (Optional[Union[google.ai.generativelanguage_v1beta3.types.GenerateTextRequest, dict]]):
                The request object. Request to generate a text completion
                response from the model.
            model (:class:`str`):
                Required. The name of the ``Model`` or ``TunedModel`` to
                use for generating the completion. Examples:
                models/text-bison-001
                tunedModels/sentence-translator-u3b7m

                This corresponds to the ``model`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            prompt (:class:`google.ai.generativelanguage_v1beta3.types.TextPrompt`):
                Required. The free-form input text
                given to the model as a prompt.
                Given a prompt, the model will generate
                a TextCompletion response it predicts as
                the completion of the input text.

                This corresponds to the ``prompt`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            temperature (:class:`float`):
                Optional. Controls the randomness of the output. Note:
                The default value varies by model, see the
                ``Model.temperature`` attribute of the ``Model``
                returned the ``getModel`` function.

                Values can range from [0.0,1.0], inclusive. A value
                closer to 1.0 will produce responses that are more
                varied and creative, while a value closer to 0.0 will
                typically result in more straightforward responses from
                the model.

                This corresponds to the ``temperature`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            candidate_count (:class:`int`):
                Optional. Number of generated responses to return.

                This value must be between [1, 8], inclusive. If unset,
                this will default to 1.

                This corresponds to the ``candidate_count`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            max_output_tokens (:class:`int`):
                Optional. The maximum number of tokens to include in a
                candidate.

                If unset, this will default to output_token_limit
                specified in the ``Model`` specification.

                This corresponds to the ``max_output_tokens`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            top_p (:class:`float`):
                Optional. The maximum cumulative probability of tokens
                to consider when sampling.

                The model uses combined Top-k and nucleus sampling.

                Tokens are sorted based on their assigned probabilities
                so that only the most likely tokens are considered.
                Top-k sampling directly limits the maximum number of
                tokens to consider, while Nucleus sampling limits number
                of tokens based on the cumulative probability.

                Note: The default value varies by model, see the
                ``Model.top_p`` attribute of the ``Model`` returned the
                ``getModel`` function.

                This corresponds to the ``top_p`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            top_k (:class:`int`):
                Optional. The maximum number of tokens to consider when
                sampling.

                The model uses combined Top-k and nucleus sampling.

                Top-k sampling considers the set of ``top_k`` most
                probable tokens. Defaults to 40.

                Note: The default value varies by model, see the
                ``Model.top_k`` attribute of the ``Model`` returned the
                ``getModel`` function.

                This corresponds to the ``top_k`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.

        Returns:
            google.ai.generativelanguage_v1beta3.types.GenerateTextResponse:
                The response from the model,
                including candidate completions.

        """
        # Create or coerce a protobuf request object.
        # - Quick check: If we got a request object, we should *not* have
        #   gotten any keyword arguments that map to the request.
        has_flattened_params = any(
            [
                model,
                prompt,
                temperature,
                candidate_count,
                max_output_tokens,
                top_p,
                top_k,
            ]
        )
        if request is not None and has_flattened_params:
            raise ValueError(
                "If the `request` argument is set, then none of "
                "the individual field arguments should be set."
            )

        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, text_service.GenerateTextRequest):
            request = text_service.GenerateTextRequest(request)

        # If we have keyword arguments corresponding to fields on the
        # request, apply these.
        if model is not None:
            request.model = model
        if prompt is not None:
            request.prompt = prompt
        if temperature is not None:
            request.temperature = temperature
        if candidate_count is not None:
            request.candidate_count = candidate_count
        if max_output_tokens is not None:
            request.max_output_tokens = max_output_tokens
        if top_p is not None:
            request.top_p = top_p
        if top_k is not None:
            request.top_k = top_k

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._client._transport._wrapped_methods[
            self._client._transport.generate_text
        ]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)),
        )

        # Validate the universe domain.
        self._client._validate_universe_domain()

        # Send the request.
        response = await rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    async def embed_text(
        self,
        request: Optional[Union[text_service.EmbedTextRequest, dict]] = None,
        *,
        model: Optional[str] = None,
        text: Optional[str] = None,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> text_service.EmbedTextResponse:
        r"""Generates an embedding from the model given an input
        message.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1beta3

            async def sample_embed_text():
                # Create a client
                client = generativelanguage_v1beta3.TextServiceAsyncClient()

                # Initialize request argument(s)
                request = generativelanguage_v1beta3.EmbedTextRequest(
                    model="model_value",
                    text="text_value",
                )

                # Make the request
                response = await client.embed_text(request=request)

                # Handle the response
                print(response)

        Args:
            request (Optional[Union[google.ai.generativelanguage_v1beta3.types.EmbedTextRequest, dict]]):
                The request object. Request to get a text embedding from
                the model.
            model (:class:`str`):
                Required. The model name to use with
                the format model=models/{model}.

                This corresponds to the ``model`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            text (:class:`str`):
                Required. The free-form input text
                that the model will turn into an
                embedding.

                This corresponds to the ``text`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.

        Returns:
            google.ai.generativelanguage_v1beta3.types.EmbedTextResponse:
                The response to a EmbedTextRequest.
        """
        # Create or coerce a protobuf request object.
        # - Quick check: If we got a request object, we should *not* have
        #   gotten any keyword arguments that map to the request.
        has_flattened_params = any([model, text])
        if request is not None and has_flattened_params:
            raise ValueError(
                "If the `request` argument is set, then none of "
                "the individual field arguments should be set."
            )

        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, text_service.EmbedTextRequest):
            request = text_service.EmbedTextRequest(request)

        # If we have keyword arguments corresponding to fields on the
        # request, apply these.
        if model is not None:
            request.model = model
        if text is not None:
            request.text = text

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._client._transport._wrapped_methods[
            self._client._transport.embed_text
        ]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)),
        )

        # Validate the universe domain.
        self._client._validate_universe_domain()

        # Send the request.
        response = await rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    async def batch_embed_text(
        self,
        request: Optional[Union[text_service.BatchEmbedTextRequest, dict]] = None,
        *,
        model: Optional[str] = None,
        texts: Optional[MutableSequence[str]] = None,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> text_service.BatchEmbedTextResponse:
        r"""Generates multiple embeddings from the model given
        input text in a synchronous call.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1beta3

            async def sample_batch_embed_text():
                # Create a client
                client = generativelanguage_v1beta3.TextServiceAsyncClient()

                # Initialize request argument(s)
                request = generativelanguage_v1beta3.BatchEmbedTextRequest(
                    model="model_value",
                    texts=['texts_value1', 'texts_value2'],
                )

                # Make the request
                response = await client.batch_embed_text(request=request)

                # Handle the response
                print(response)

        Args:
            request (Optional[Union[google.ai.generativelanguage_v1beta3.types.BatchEmbedTextRequest, dict]]):
                The request object. Batch request to get a text embedding
                from the model.
            model (:class:`str`):
                Required. The name of the ``Model`` to use for
                generating the embedding. Examples:
                models/embedding-gecko-001

                This corresponds to the ``model`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            texts (:class:`MutableSequence[str]`):
                Required. The free-form input texts
                that the model will turn into an
                embedding.  The current limit is 100
                texts, over which an error will be
                thrown.

                This corresponds to the ``texts`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.

        Returns:
            google.ai.generativelanguage_v1beta3.types.BatchEmbedTextResponse:
                The response to a EmbedTextRequest.
        """
        # Create or coerce a protobuf request object.
        # - Quick check: If we got a request object, we should *not* have
        #   gotten any keyword arguments that map to the request.
        has_flattened_params = any([model, texts])
        if request is not None and has_flattened_params:
            raise ValueError(
                "If the `request` argument is set, then none of "
                "the individual field arguments should be set."
            )

        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, text_service.BatchEmbedTextRequest):
            request = text_service.BatchEmbedTextRequest(request)

        # If we have keyword arguments corresponding to fields on the
        # request, apply these.
        if model is not None:
            request.model = model
        if texts:
            request.texts.extend(texts)

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._client._transport._wrapped_methods[
            self._client._transport.batch_embed_text
        ]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)),
        )

        # Validate the universe domain.
        self._client._validate_universe_domain()

        # Send the request.
        response = await rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    async def count_text_tokens(
        self,
        request: Optional[Union[text_service.CountTextTokensRequest, dict]] = None,
        *,
        model: Optional[str] = None,
        prompt: Optional[text_service.TextPrompt] = None,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> text_service.CountTextTokensResponse:
        r"""Runs a model's tokenizer on a text and returns the
        token count.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1beta3

            async def sample_count_text_tokens():
                # Create a client
                client = generativelanguage_v1beta3.TextServiceAsyncClient()

                # Initialize request argument(s)
                prompt = generativelanguage_v1beta3.TextPrompt()
                prompt.text = "text_value"

                request = generativelanguage_v1beta3.CountTextTokensRequest(
                    model="model_value",
                    prompt=prompt,
                )

                # Make the request
                response = await client.count_text_tokens(request=request)

                # Handle the response
                print(response)

        Args:
            request (Optional[Union[google.ai.generativelanguage_v1beta3.types.CountTextTokensRequest, dict]]):
                The request object. Counts the number of tokens in the ``prompt`` sent to a
                model.

                Models may tokenize text differently, so each model may
                return a different ``token_count``.
            model (:class:`str`):
                Required. The model's resource name. This serves as an
                ID for the Model to use.

                This name should match a model name returned by the
                ``ListModels`` method.

                Format: ``models/{model}``

                This corresponds to the ``model`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            prompt (:class:`google.ai.generativelanguage_v1beta3.types.TextPrompt`):
                Required. The free-form input text
                given to the model as a prompt.

                This corresponds to the ``prompt`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            retry (google.api_core.retry_async.AsyncRetry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.

        Returns:
            google.ai.generativelanguage_v1beta3.types.CountTextTokensResponse:
                A response from CountTextTokens.

                   It returns the model's token_count for the prompt.

        """
        # Create or coerce a protobuf request object.
        # - Quick check: If we got a request object, we should *not* have
        #   gotten any keyword arguments that map to the request.
        has_flattened_params = any([model, prompt])
        if request is not None and has_flattened_params:
            raise ValueError(
                "If the `request` argument is set, then none of "
                "the individual field arguments should be set."
            )

        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, text_service.CountTextTokensRequest):
            request = text_service.CountTextTokensRequest(request)

        # If we have keyword arguments corresponding to fields on the
        # request, apply these.
        if model is not None:
            request.model = model
        if prompt is not None:
            request.prompt = prompt

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._client._transport._wrapped_methods[
            self._client._transport.count_text_tokens
        ]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("model", request.model),)),
        )

        # Validate the universe domain.
        self._client._validate_universe_domain()

        # Send the request.
        response = await rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    async def __aenter__(self) -> "TextServiceAsyncClient":
        return self

    async def __aexit__(self, exc_type, exc, tb):
        await self.transport.close()


DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo(
    gapic_version=package_version.__version__
)


__all__ = ("TextServiceAsyncClient",)
