# -*- coding: utf-8 -*-
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from collections import OrderedDict
import logging as std_logging
import os
import re
from typing import (
    Callable,
    Dict,
    Mapping,
    MutableMapping,
    MutableSequence,
    Optional,
    Sequence,
    Tuple,
    Type,
    Union,
    cast,
)
import warnings

from google.api_core import client_options as client_options_lib
from google.api_core import exceptions as core_exceptions
from google.api_core import gapic_v1
from google.api_core import retry as retries
from google.auth import credentials as ga_credentials  # type: ignore
from google.auth.exceptions import MutualTLSChannelError  # type: ignore
from google.auth.transport import mtls  # type: ignore
from google.auth.transport.grpc import SslCredentials  # type: ignore
from google.oauth2 import service_account  # type: ignore

from google.ai.generativelanguage_v1alpha import gapic_version as package_version

try:
    OptionalRetry = Union[retries.Retry, gapic_v1.method._MethodDefault, None]
except AttributeError:  # pragma: NO COVER
    OptionalRetry = Union[retries.Retry, object, None]  # type: ignore

try:
    from google.api_core import client_logging  # type: ignore

    CLIENT_LOGGING_SUPPORTED = True  # pragma: NO COVER
except ImportError:  # pragma: NO COVER
    CLIENT_LOGGING_SUPPORTED = False

_LOGGER = std_logging.getLogger(__name__)

from google.longrunning import operations_pb2  # type: ignore
from google.protobuf import field_mask_pb2  # type: ignore
from google.protobuf import timestamp_pb2  # type: ignore

from google.ai.generativelanguage_v1alpha.services.retriever_service import pagers
from google.ai.generativelanguage_v1alpha.types import retriever, retriever_service

from .transports.base import DEFAULT_CLIENT_INFO, RetrieverServiceTransport
from .transports.grpc import RetrieverServiceGrpcTransport
from .transports.grpc_asyncio import RetrieverServiceGrpcAsyncIOTransport
from .transports.rest import RetrieverServiceRestTransport


class RetrieverServiceClientMeta(type):
    """Metaclass for the RetrieverService client.

    This provides class-level methods for building and retrieving
    support objects (e.g. transport) without polluting the client instance
    objects.
    """

    _transport_registry = (
        OrderedDict()
    )  # type: Dict[str, Type[RetrieverServiceTransport]]
    _transport_registry["grpc"] = RetrieverServiceGrpcTransport
    _transport_registry["grpc_asyncio"] = RetrieverServiceGrpcAsyncIOTransport
    _transport_registry["rest"] = RetrieverServiceRestTransport

    def get_transport_class(
        cls,
        label: Optional[str] = None,
    ) -> Type[RetrieverServiceTransport]:
        """Returns an appropriate transport class.

        Args:
            label: The name of the desired transport. If none is
                provided, then the first transport in the registry is used.

        Returns:
            The transport class to use.
        """
        # If a specific transport is requested, return that one.
        if label:
            return cls._transport_registry[label]

        # No transport is requested; return the default (that is, the first one
        # in the dictionary).
        return next(iter(cls._transport_registry.values()))


class RetrieverServiceClient(metaclass=RetrieverServiceClientMeta):
    """An API for semantic search over a corpus of user uploaded
    content.
    """

    @staticmethod
    def _get_default_mtls_endpoint(api_endpoint):
        """Converts api endpoint to mTLS endpoint.

        Convert "*.sandbox.googleapis.com" and "*.googleapis.com" to
        "*.mtls.sandbox.googleapis.com" and "*.mtls.googleapis.com" respectively.
        Args:
            api_endpoint (Optional[str]): the api endpoint to convert.
        Returns:
            str: converted mTLS api endpoint.
        """
        if not api_endpoint:
            return api_endpoint

        mtls_endpoint_re = re.compile(
            r"(?P<name>[^.]+)(?P<mtls>\.mtls)?(?P<sandbox>\.sandbox)?(?P<googledomain>\.googleapis\.com)?"
        )

        m = mtls_endpoint_re.match(api_endpoint)
        name, mtls, sandbox, googledomain = m.groups()
        if mtls or not googledomain:
            return api_endpoint

        if sandbox:
            return api_endpoint.replace(
                "sandbox.googleapis.com", "mtls.sandbox.googleapis.com"
            )

        return api_endpoint.replace(".googleapis.com", ".mtls.googleapis.com")

    # Note: DEFAULT_ENDPOINT is deprecated. Use _DEFAULT_ENDPOINT_TEMPLATE instead.
    DEFAULT_ENDPOINT = "generativelanguage.googleapis.com"
    DEFAULT_MTLS_ENDPOINT = _get_default_mtls_endpoint.__func__(  # type: ignore
        DEFAULT_ENDPOINT
    )

    _DEFAULT_ENDPOINT_TEMPLATE = "generativelanguage.{UNIVERSE_DOMAIN}"
    _DEFAULT_UNIVERSE = "googleapis.com"

    @classmethod
    def from_service_account_info(cls, info: dict, *args, **kwargs):
        """Creates an instance of this client using the provided credentials
            info.

        Args:
            info (dict): The service account private key info.
            args: Additional arguments to pass to the constructor.
            kwargs: Additional arguments to pass to the constructor.

        Returns:
            RetrieverServiceClient: The constructed client.
        """
        credentials = service_account.Credentials.from_service_account_info(info)
        kwargs["credentials"] = credentials
        return cls(*args, **kwargs)

    @classmethod
    def from_service_account_file(cls, filename: str, *args, **kwargs):
        """Creates an instance of this client using the provided credentials
            file.

        Args:
            filename (str): The path to the service account private key json
                file.
            args: Additional arguments to pass to the constructor.
            kwargs: Additional arguments to pass to the constructor.

        Returns:
            RetrieverServiceClient: The constructed client.
        """
        credentials = service_account.Credentials.from_service_account_file(filename)
        kwargs["credentials"] = credentials
        return cls(*args, **kwargs)

    from_service_account_json = from_service_account_file

    @property
    def transport(self) -> RetrieverServiceTransport:
        """Returns the transport used by the client instance.

        Returns:
            RetrieverServiceTransport: The transport used by the client
                instance.
        """
        return self._transport

    @staticmethod
    def chunk_path(
        corpus: str,
        document: str,
        chunk: str,
    ) -> str:
        """Returns a fully-qualified chunk string."""
        return "corpora/{corpus}/documents/{document}/chunks/{chunk}".format(
            corpus=corpus,
            document=document,
            chunk=chunk,
        )

    @staticmethod
    def parse_chunk_path(path: str) -> Dict[str, str]:
        """Parses a chunk path into its component segments."""
        m = re.match(
            r"^corpora/(?P<corpus>.+?)/documents/(?P<document>.+?)/chunks/(?P<chunk>.+?)$",
            path,
        )
        return m.groupdict() if m else {}

    @staticmethod
    def corpus_path(
        corpus: str,
    ) -> str:
        """Returns a fully-qualified corpus string."""
        return "corpora/{corpus}".format(
            corpus=corpus,
        )

    @staticmethod
    def parse_corpus_path(path: str) -> Dict[str, str]:
        """Parses a corpus path into its component segments."""
        m = re.match(r"^corpora/(?P<corpus>.+?)$", path)
        return m.groupdict() if m else {}

    @staticmethod
    def document_path(
        corpus: str,
        document: str,
    ) -> str:
        """Returns a fully-qualified document string."""
        return "corpora/{corpus}/documents/{document}".format(
            corpus=corpus,
            document=document,
        )

    @staticmethod
    def parse_document_path(path: str) -> Dict[str, str]:
        """Parses a document path into its component segments."""
        m = re.match(r"^corpora/(?P<corpus>.+?)/documents/(?P<document>.+?)$", path)
        return m.groupdict() if m else {}

    @staticmethod
    def common_billing_account_path(
        billing_account: str,
    ) -> str:
        """Returns a fully-qualified billing_account string."""
        return "billingAccounts/{billing_account}".format(
            billing_account=billing_account,
        )

    @staticmethod
    def parse_common_billing_account_path(path: str) -> Dict[str, str]:
        """Parse a billing_account path into its component segments."""
        m = re.match(r"^billingAccounts/(?P<billing_account>.+?)$", path)
        return m.groupdict() if m else {}

    @staticmethod
    def common_folder_path(
        folder: str,
    ) -> str:
        """Returns a fully-qualified folder string."""
        return "folders/{folder}".format(
            folder=folder,
        )

    @staticmethod
    def parse_common_folder_path(path: str) -> Dict[str, str]:
        """Parse a folder path into its component segments."""
        m = re.match(r"^folders/(?P<folder>.+?)$", path)
        return m.groupdict() if m else {}

    @staticmethod
    def common_organization_path(
        organization: str,
    ) -> str:
        """Returns a fully-qualified organization string."""
        return "organizations/{organization}".format(
            organization=organization,
        )

    @staticmethod
    def parse_common_organization_path(path: str) -> Dict[str, str]:
        """Parse a organization path into its component segments."""
        m = re.match(r"^organizations/(?P<organization>.+?)$", path)
        return m.groupdict() if m else {}

    @staticmethod
    def common_project_path(
        project: str,
    ) -> str:
        """Returns a fully-qualified project string."""
        return "projects/{project}".format(
            project=project,
        )

    @staticmethod
    def parse_common_project_path(path: str) -> Dict[str, str]:
        """Parse a project path into its component segments."""
        m = re.match(r"^projects/(?P<project>.+?)$", path)
        return m.groupdict() if m else {}

    @staticmethod
    def common_location_path(
        project: str,
        location: str,
    ) -> str:
        """Returns a fully-qualified location string."""
        return "projects/{project}/locations/{location}".format(
            project=project,
            location=location,
        )

    @staticmethod
    def parse_common_location_path(path: str) -> Dict[str, str]:
        """Parse a location path into its component segments."""
        m = re.match(r"^projects/(?P<project>.+?)/locations/(?P<location>.+?)$", path)
        return m.groupdict() if m else {}

    @classmethod
    def get_mtls_endpoint_and_cert_source(
        cls, client_options: Optional[client_options_lib.ClientOptions] = None
    ):
        """Deprecated. Return the API endpoint and client cert source for mutual TLS.

        The client cert source is determined in the following order:
        (1) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is not "true", the
        client cert source is None.
        (2) if `client_options.client_cert_source` is provided, use the provided one; if the
        default client cert source exists, use the default one; otherwise the client cert
        source is None.

        The API endpoint is determined in the following order:
        (1) if `client_options.api_endpoint` if provided, use the provided one.
        (2) if `GOOGLE_API_USE_CLIENT_CERTIFICATE` environment variable is "always", use the
        default mTLS endpoint; if the environment variable is "never", use the default API
        endpoint; otherwise if client cert source exists, use the default mTLS endpoint, otherwise
        use the default API endpoint.

        More details can be found at https://google.aip.dev/auth/4114.

        Args:
            client_options (google.api_core.client_options.ClientOptions): Custom options for the
                client. Only the `api_endpoint` and `client_cert_source` properties may be used
                in this method.

        Returns:
            Tuple[str, Callable[[], Tuple[bytes, bytes]]]: returns the API endpoint and the
                client cert source to use.

        Raises:
            google.auth.exceptions.MutualTLSChannelError: If any errors happen.
        """

        warnings.warn(
            "get_mtls_endpoint_and_cert_source is deprecated. Use the api_endpoint property instead.",
            DeprecationWarning,
        )
        if client_options is None:
            client_options = client_options_lib.ClientOptions()
        use_client_cert = os.getenv("GOOGLE_API_USE_CLIENT_CERTIFICATE", "false")
        use_mtls_endpoint = os.getenv("GOOGLE_API_USE_MTLS_ENDPOINT", "auto")
        if use_client_cert not in ("true", "false"):
            raise ValueError(
                "Environment variable `GOOGLE_API_USE_CLIENT_CERTIFICATE` must be either `true` or `false`"
            )
        if use_mtls_endpoint not in ("auto", "never", "always"):
            raise MutualTLSChannelError(
                "Environment variable `GOOGLE_API_USE_MTLS_ENDPOINT` must be `never`, `auto` or `always`"
            )

        # Figure out the client cert source to use.
        client_cert_source = None
        if use_client_cert == "true":
            if client_options.client_cert_source:
                client_cert_source = client_options.client_cert_source
            elif mtls.has_default_client_cert_source():
                client_cert_source = mtls.default_client_cert_source()

        # Figure out which api endpoint to use.
        if client_options.api_endpoint is not None:
            api_endpoint = client_options.api_endpoint
        elif use_mtls_endpoint == "always" or (
            use_mtls_endpoint == "auto" and client_cert_source
        ):
            api_endpoint = cls.DEFAULT_MTLS_ENDPOINT
        else:
            api_endpoint = cls.DEFAULT_ENDPOINT

        return api_endpoint, client_cert_source

    @staticmethod
    def _read_environment_variables():
        """Returns the environment variables used by the client.

        Returns:
            Tuple[bool, str, str]: returns the GOOGLE_API_USE_CLIENT_CERTIFICATE,
            GOOGLE_API_USE_MTLS_ENDPOINT, and GOOGLE_CLOUD_UNIVERSE_DOMAIN environment variables.

        Raises:
            ValueError: If GOOGLE_API_USE_CLIENT_CERTIFICATE is not
                any of ["true", "false"].
            google.auth.exceptions.MutualTLSChannelError: If GOOGLE_API_USE_MTLS_ENDPOINT
                is not any of ["auto", "never", "always"].
        """
        use_client_cert = os.getenv(
            "GOOGLE_API_USE_CLIENT_CERTIFICATE", "false"
        ).lower()
        use_mtls_endpoint = os.getenv("GOOGLE_API_USE_MTLS_ENDPOINT", "auto").lower()
        universe_domain_env = os.getenv("GOOGLE_CLOUD_UNIVERSE_DOMAIN")
        if use_client_cert not in ("true", "false"):
            raise ValueError(
                "Environment variable `GOOGLE_API_USE_CLIENT_CERTIFICATE` must be either `true` or `false`"
            )
        if use_mtls_endpoint not in ("auto", "never", "always"):
            raise MutualTLSChannelError(
                "Environment variable `GOOGLE_API_USE_MTLS_ENDPOINT` must be `never`, `auto` or `always`"
            )
        return use_client_cert == "true", use_mtls_endpoint, universe_domain_env

    @staticmethod
    def _get_client_cert_source(provided_cert_source, use_cert_flag):
        """Return the client cert source to be used by the client.

        Args:
            provided_cert_source (bytes): The client certificate source provided.
            use_cert_flag (bool): A flag indicating whether to use the client certificate.

        Returns:
            bytes or None: The client cert source to be used by the client.
        """
        client_cert_source = None
        if use_cert_flag:
            if provided_cert_source:
                client_cert_source = provided_cert_source
            elif mtls.has_default_client_cert_source():
                client_cert_source = mtls.default_client_cert_source()
        return client_cert_source

    @staticmethod
    def _get_api_endpoint(
        api_override, client_cert_source, universe_domain, use_mtls_endpoint
    ):
        """Return the API endpoint used by the client.

        Args:
            api_override (str): The API endpoint override. If specified, this is always
                the return value of this function and the other arguments are not used.
            client_cert_source (bytes): The client certificate source used by the client.
            universe_domain (str): The universe domain used by the client.
            use_mtls_endpoint (str): How to use the mTLS endpoint, which depends also on the other parameters.
                Possible values are "always", "auto", or "never".

        Returns:
            str: The API endpoint to be used by the client.
        """
        if api_override is not None:
            api_endpoint = api_override
        elif use_mtls_endpoint == "always" or (
            use_mtls_endpoint == "auto" and client_cert_source
        ):
            _default_universe = RetrieverServiceClient._DEFAULT_UNIVERSE
            if universe_domain != _default_universe:
                raise MutualTLSChannelError(
                    f"mTLS is not supported in any universe other than {_default_universe}."
                )
            api_endpoint = RetrieverServiceClient.DEFAULT_MTLS_ENDPOINT
        else:
            api_endpoint = RetrieverServiceClient._DEFAULT_ENDPOINT_TEMPLATE.format(
                UNIVERSE_DOMAIN=universe_domain
            )
        return api_endpoint

    @staticmethod
    def _get_universe_domain(
        client_universe_domain: Optional[str], universe_domain_env: Optional[str]
    ) -> str:
        """Return the universe domain used by the client.

        Args:
            client_universe_domain (Optional[str]): The universe domain configured via the client options.
            universe_domain_env (Optional[str]): The universe domain configured via the "GOOGLE_CLOUD_UNIVERSE_DOMAIN" environment variable.

        Returns:
            str: The universe domain to be used by the client.

        Raises:
            ValueError: If the universe domain is an empty string.
        """
        universe_domain = RetrieverServiceClient._DEFAULT_UNIVERSE
        if client_universe_domain is not None:
            universe_domain = client_universe_domain
        elif universe_domain_env is not None:
            universe_domain = universe_domain_env
        if len(universe_domain.strip()) == 0:
            raise ValueError("Universe Domain cannot be an empty string.")
        return universe_domain

    def _validate_universe_domain(self):
        """Validates client's and credentials' universe domains are consistent.

        Returns:
            bool: True iff the configured universe domain is valid.

        Raises:
            ValueError: If the configured universe domain is not valid.
        """

        # NOTE (b/349488459): universe validation is disabled until further notice.
        return True

    @property
    def api_endpoint(self):
        """Return the API endpoint used by the client instance.

        Returns:
            str: The API endpoint used by the client instance.
        """
        return self._api_endpoint

    @property
    def universe_domain(self) -> str:
        """Return the universe domain used by the client instance.

        Returns:
            str: The universe domain used by the client instance.
        """
        return self._universe_domain

    def __init__(
        self,
        *,
        credentials: Optional[ga_credentials.Credentials] = None,
        transport: Optional[
            Union[
                str, RetrieverServiceTransport, Callable[..., RetrieverServiceTransport]
            ]
        ] = None,
        client_options: Optional[Union[client_options_lib.ClientOptions, dict]] = None,
        client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO,
    ) -> None:
        """Instantiates the retriever service client.

        Args:
            credentials (Optional[google.auth.credentials.Credentials]): The
                authorization credentials to attach to requests. These
                credentials identify the application to the service; if none
                are specified, the client will attempt to ascertain the
                credentials from the environment.
            transport (Optional[Union[str,RetrieverServiceTransport,Callable[..., RetrieverServiceTransport]]]):
                The transport to use, or a Callable that constructs and returns a new transport.
                If a Callable is given, it will be called with the same set of initialization
                arguments as used in the RetrieverServiceTransport constructor.
                If set to None, a transport is chosen automatically.
            client_options (Optional[Union[google.api_core.client_options.ClientOptions, dict]]):
                Custom options for the client.

                1. The ``api_endpoint`` property can be used to override the
                default endpoint provided by the client when ``transport`` is
                not explicitly provided. Only if this property is not set and
                ``transport`` was not explicitly provided, the endpoint is
                determined by the GOOGLE_API_USE_MTLS_ENDPOINT environment
                variable, which have one of the following values:
                "always" (always use the default mTLS endpoint), "never" (always
                use the default regular endpoint) and "auto" (auto-switch to the
                default mTLS endpoint if client certificate is present; this is
                the default value).

                2. If the GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable
                is "true", then the ``client_cert_source`` property can be used
                to provide a client certificate for mTLS transport. If
                not provided, the default SSL client certificate will be used if
                present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not
                set, no client certificate will be used.

                3. The ``universe_domain`` property can be used to override the
                default "googleapis.com" universe. Note that the ``api_endpoint``
                property still takes precedence; and ``universe_domain`` is
                currently not supported for mTLS.

            client_info (google.api_core.gapic_v1.client_info.ClientInfo):
                The client info used to send a user-agent string along with
                API requests. If ``None``, then default info will be used.
                Generally, you only need to set this if you're developing
                your own client library.

        Raises:
            google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport
                creation failed for any reason.
        """
        self._client_options = client_options
        if isinstance(self._client_options, dict):
            self._client_options = client_options_lib.from_dict(self._client_options)
        if self._client_options is None:
            self._client_options = client_options_lib.ClientOptions()
        self._client_options = cast(
            client_options_lib.ClientOptions, self._client_options
        )

        universe_domain_opt = getattr(self._client_options, "universe_domain", None)

        (
            self._use_client_cert,
            self._use_mtls_endpoint,
            self._universe_domain_env,
        ) = RetrieverServiceClient._read_environment_variables()
        self._client_cert_source = RetrieverServiceClient._get_client_cert_source(
            self._client_options.client_cert_source, self._use_client_cert
        )
        self._universe_domain = RetrieverServiceClient._get_universe_domain(
            universe_domain_opt, self._universe_domain_env
        )
        self._api_endpoint = None  # updated below, depending on `transport`

        # Initialize the universe domain validation.
        self._is_universe_domain_valid = False

        if CLIENT_LOGGING_SUPPORTED:  # pragma: NO COVER
            # Setup logging.
            client_logging.initialize_logging()

        api_key_value = getattr(self._client_options, "api_key", None)
        if api_key_value and credentials:
            raise ValueError(
                "client_options.api_key and credentials are mutually exclusive"
            )

        # Save or instantiate the transport.
        # Ordinarily, we provide the transport, but allowing a custom transport
        # instance provides an extensibility point for unusual situations.
        transport_provided = isinstance(transport, RetrieverServiceTransport)
        if transport_provided:
            # transport is a RetrieverServiceTransport instance.
            if credentials or self._client_options.credentials_file or api_key_value:
                raise ValueError(
                    "When providing a transport instance, "
                    "provide its credentials directly."
                )
            if self._client_options.scopes:
                raise ValueError(
                    "When providing a transport instance, provide its scopes "
                    "directly."
                )
            self._transport = cast(RetrieverServiceTransport, transport)
            self._api_endpoint = self._transport.host

        self._api_endpoint = (
            self._api_endpoint
            or RetrieverServiceClient._get_api_endpoint(
                self._client_options.api_endpoint,
                self._client_cert_source,
                self._universe_domain,
                self._use_mtls_endpoint,
            )
        )

        if not transport_provided:
            import google.auth._default  # type: ignore

            if api_key_value and hasattr(
                google.auth._default, "get_api_key_credentials"
            ):
                credentials = google.auth._default.get_api_key_credentials(
                    api_key_value
                )

            transport_init: Union[
                Type[RetrieverServiceTransport],
                Callable[..., RetrieverServiceTransport],
            ] = (
                RetrieverServiceClient.get_transport_class(transport)
                if isinstance(transport, str) or transport is None
                else cast(Callable[..., RetrieverServiceTransport], transport)
            )
            # initialize with the provided callable or the passed in class
            self._transport = transport_init(
                credentials=credentials,
                credentials_file=self._client_options.credentials_file,
                host=self._api_endpoint,
                scopes=self._client_options.scopes,
                client_cert_source_for_mtls=self._client_cert_source,
                quota_project_id=self._client_options.quota_project_id,
                client_info=client_info,
                always_use_jwt_access=True,
                api_audience=self._client_options.api_audience,
            )

        if "async" not in str(self._transport):
            if CLIENT_LOGGING_SUPPORTED and _LOGGER.isEnabledFor(
                std_logging.DEBUG
            ):  # pragma: NO COVER
                _LOGGER.debug(
                    "Created client `google.ai.generativelanguage_v1alpha.RetrieverServiceClient`.",
                    extra={
                        "serviceName": "google.ai.generativelanguage.v1alpha.RetrieverService",
                        "universeDomain": getattr(
                            self._transport._credentials, "universe_domain", ""
                        ),
                        "credentialsType": f"{type(self._transport._credentials).__module__}.{type(self._transport._credentials).__qualname__}",
                        "credentialsInfo": getattr(
                            self.transport._credentials, "get_cred_info", lambda: None
                        )(),
                    }
                    if hasattr(self._transport, "_credentials")
                    else {
                        "serviceName": "google.ai.generativelanguage.v1alpha.RetrieverService",
                        "credentialsType": None,
                    },
                )

    def create_corpus(
        self,
        request: Optional[Union[retriever_service.CreateCorpusRequest, dict]] = None,
        *,
        corpus: Optional[retriever.Corpus] = None,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> retriever.Corpus:
        r"""Creates an empty ``Corpus``.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1alpha

            def sample_create_corpus():
                # Create a client
                client = generativelanguage_v1alpha.RetrieverServiceClient()

                # Initialize request argument(s)
                request = generativelanguage_v1alpha.CreateCorpusRequest(
                )

                # Make the request
                response = client.create_corpus(request=request)

                # Handle the response
                print(response)

        Args:
            request (Union[google.ai.generativelanguage_v1alpha.types.CreateCorpusRequest, dict]):
                The request object. Request to create a ``Corpus``.
            corpus (google.ai.generativelanguage_v1alpha.types.Corpus):
                Required. The ``Corpus`` to create.
                This corresponds to the ``corpus`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.

        Returns:
            google.ai.generativelanguage_v1alpha.types.Corpus:
                A Corpus is a collection of Documents.
                   A project can create up to 5 corpora.

        """
        # Create or coerce a protobuf request object.
        # - Quick check: If we got a request object, we should *not* have
        #   gotten any keyword arguments that map to the request.
        has_flattened_params = any([corpus])
        if request is not None and has_flattened_params:
            raise ValueError(
                "If the `request` argument is set, then none of "
                "the individual field arguments should be set."
            )

        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, retriever_service.CreateCorpusRequest):
            request = retriever_service.CreateCorpusRequest(request)
            # If we have keyword arguments corresponding to fields on the
            # request, apply these.
            if corpus is not None:
                request.corpus = corpus

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.create_corpus]

        # Validate the universe domain.
        self._validate_universe_domain()

        # Send the request.
        response = rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    def get_corpus(
        self,
        request: Optional[Union[retriever_service.GetCorpusRequest, dict]] = None,
        *,
        name: Optional[str] = None,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> retriever.Corpus:
        r"""Gets information about a specific ``Corpus``.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1alpha

            def sample_get_corpus():
                # Create a client
                client = generativelanguage_v1alpha.RetrieverServiceClient()

                # Initialize request argument(s)
                request = generativelanguage_v1alpha.GetCorpusRequest(
                    name="name_value",
                )

                # Make the request
                response = client.get_corpus(request=request)

                # Handle the response
                print(response)

        Args:
            request (Union[google.ai.generativelanguage_v1alpha.types.GetCorpusRequest, dict]):
                The request object. Request for getting information about a specific
                ``Corpus``.
            name (str):
                Required. The name of the ``Corpus``. Example:
                ``corpora/my-corpus-123``

                This corresponds to the ``name`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.

        Returns:
            google.ai.generativelanguage_v1alpha.types.Corpus:
                A Corpus is a collection of Documents.
                   A project can create up to 5 corpora.

        """
        # Create or coerce a protobuf request object.
        # - Quick check: If we got a request object, we should *not* have
        #   gotten any keyword arguments that map to the request.
        has_flattened_params = any([name])
        if request is not None and has_flattened_params:
            raise ValueError(
                "If the `request` argument is set, then none of "
                "the individual field arguments should be set."
            )

        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, retriever_service.GetCorpusRequest):
            request = retriever_service.GetCorpusRequest(request)
            # If we have keyword arguments corresponding to fields on the
            # request, apply these.
            if name is not None:
                request.name = name

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.get_corpus]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)),
        )

        # Validate the universe domain.
        self._validate_universe_domain()

        # Send the request.
        response = rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    def update_corpus(
        self,
        request: Optional[Union[retriever_service.UpdateCorpusRequest, dict]] = None,
        *,
        corpus: Optional[retriever.Corpus] = None,
        update_mask: Optional[field_mask_pb2.FieldMask] = None,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> retriever.Corpus:
        r"""Updates a ``Corpus``.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1alpha

            def sample_update_corpus():
                # Create a client
                client = generativelanguage_v1alpha.RetrieverServiceClient()

                # Initialize request argument(s)
                request = generativelanguage_v1alpha.UpdateCorpusRequest(
                )

                # Make the request
                response = client.update_corpus(request=request)

                # Handle the response
                print(response)

        Args:
            request (Union[google.ai.generativelanguage_v1alpha.types.UpdateCorpusRequest, dict]):
                The request object. Request to update a ``Corpus``.
            corpus (google.ai.generativelanguage_v1alpha.types.Corpus):
                Required. The ``Corpus`` to update.
                This corresponds to the ``corpus`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            update_mask (google.protobuf.field_mask_pb2.FieldMask):
                Required. The list of fields to update. Currently, this
                only supports updating ``display_name``.

                This corresponds to the ``update_mask`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.

        Returns:
            google.ai.generativelanguage_v1alpha.types.Corpus:
                A Corpus is a collection of Documents.
                   A project can create up to 5 corpora.

        """
        # Create or coerce a protobuf request object.
        # - Quick check: If we got a request object, we should *not* have
        #   gotten any keyword arguments that map to the request.
        has_flattened_params = any([corpus, update_mask])
        if request is not None and has_flattened_params:
            raise ValueError(
                "If the `request` argument is set, then none of "
                "the individual field arguments should be set."
            )

        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, retriever_service.UpdateCorpusRequest):
            request = retriever_service.UpdateCorpusRequest(request)
            # If we have keyword arguments corresponding to fields on the
            # request, apply these.
            if corpus is not None:
                request.corpus = corpus
            if update_mask is not None:
                request.update_mask = update_mask

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.update_corpus]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata(
                (("corpus.name", request.corpus.name),)
            ),
        )

        # Validate the universe domain.
        self._validate_universe_domain()

        # Send the request.
        response = rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    def delete_corpus(
        self,
        request: Optional[Union[retriever_service.DeleteCorpusRequest, dict]] = None,
        *,
        name: Optional[str] = None,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> None:
        r"""Deletes a ``Corpus``.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1alpha

            def sample_delete_corpus():
                # Create a client
                client = generativelanguage_v1alpha.RetrieverServiceClient()

                # Initialize request argument(s)
                request = generativelanguage_v1alpha.DeleteCorpusRequest(
                    name="name_value",
                )

                # Make the request
                client.delete_corpus(request=request)

        Args:
            request (Union[google.ai.generativelanguage_v1alpha.types.DeleteCorpusRequest, dict]):
                The request object. Request to delete a ``Corpus``.
            name (str):
                Required. The resource name of the ``Corpus``. Example:
                ``corpora/my-corpus-123``

                This corresponds to the ``name`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.
        """
        # Create or coerce a protobuf request object.
        # - Quick check: If we got a request object, we should *not* have
        #   gotten any keyword arguments that map to the request.
        has_flattened_params = any([name])
        if request is not None and has_flattened_params:
            raise ValueError(
                "If the `request` argument is set, then none of "
                "the individual field arguments should be set."
            )

        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, retriever_service.DeleteCorpusRequest):
            request = retriever_service.DeleteCorpusRequest(request)
            # If we have keyword arguments corresponding to fields on the
            # request, apply these.
            if name is not None:
                request.name = name

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.delete_corpus]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)),
        )

        # Validate the universe domain.
        self._validate_universe_domain()

        # Send the request.
        rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

    def list_corpora(
        self,
        request: Optional[Union[retriever_service.ListCorporaRequest, dict]] = None,
        *,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> pagers.ListCorporaPager:
        r"""Lists all ``Corpora`` owned by the user.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1alpha

            def sample_list_corpora():
                # Create a client
                client = generativelanguage_v1alpha.RetrieverServiceClient()

                # Initialize request argument(s)
                request = generativelanguage_v1alpha.ListCorporaRequest(
                )

                # Make the request
                page_result = client.list_corpora(request=request)

                # Handle the response
                for response in page_result:
                    print(response)

        Args:
            request (Union[google.ai.generativelanguage_v1alpha.types.ListCorporaRequest, dict]):
                The request object. Request for listing ``Corpora``.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.

        Returns:
            google.ai.generativelanguage_v1alpha.services.retriever_service.pagers.ListCorporaPager:
                Response from ListCorpora containing a paginated list of Corpora.
                   The results are sorted by ascending
                   corpus.create_time.

                Iterating over this object will yield results and
                resolve additional pages automatically.

        """
        # Create or coerce a protobuf request object.
        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, retriever_service.ListCorporaRequest):
            request = retriever_service.ListCorporaRequest(request)

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.list_corpora]

        # Validate the universe domain.
        self._validate_universe_domain()

        # Send the request.
        response = rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # This method is paged; wrap the response in a pager, which provides
        # an `__iter__` convenience method.
        response = pagers.ListCorporaPager(
            method=rpc,
            request=request,
            response=response,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    def query_corpus(
        self,
        request: Optional[Union[retriever_service.QueryCorpusRequest, dict]] = None,
        *,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> retriever_service.QueryCorpusResponse:
        r"""Performs semantic search over a ``Corpus``.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1alpha

            def sample_query_corpus():
                # Create a client
                client = generativelanguage_v1alpha.RetrieverServiceClient()

                # Initialize request argument(s)
                request = generativelanguage_v1alpha.QueryCorpusRequest(
                    name="name_value",
                    query="query_value",
                )

                # Make the request
                response = client.query_corpus(request=request)

                # Handle the response
                print(response)

        Args:
            request (Union[google.ai.generativelanguage_v1alpha.types.QueryCorpusRequest, dict]):
                The request object. Request for querying a ``Corpus``.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.

        Returns:
            google.ai.generativelanguage_v1alpha.types.QueryCorpusResponse:
                Response from QueryCorpus containing a list of relevant
                chunks.

        """
        # Create or coerce a protobuf request object.
        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, retriever_service.QueryCorpusRequest):
            request = retriever_service.QueryCorpusRequest(request)

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.query_corpus]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)),
        )

        # Validate the universe domain.
        self._validate_universe_domain()

        # Send the request.
        response = rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    def create_document(
        self,
        request: Optional[Union[retriever_service.CreateDocumentRequest, dict]] = None,
        *,
        parent: Optional[str] = None,
        document: Optional[retriever.Document] = None,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> retriever.Document:
        r"""Creates an empty ``Document``.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1alpha

            def sample_create_document():
                # Create a client
                client = generativelanguage_v1alpha.RetrieverServiceClient()

                # Initialize request argument(s)
                request = generativelanguage_v1alpha.CreateDocumentRequest(
                    parent="parent_value",
                )

                # Make the request
                response = client.create_document(request=request)

                # Handle the response
                print(response)

        Args:
            request (Union[google.ai.generativelanguage_v1alpha.types.CreateDocumentRequest, dict]):
                The request object. Request to create a ``Document``.
            parent (str):
                Required. The name of the ``Corpus`` where this
                ``Document`` will be created. Example:
                ``corpora/my-corpus-123``

                This corresponds to the ``parent`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            document (google.ai.generativelanguage_v1alpha.types.Document):
                Required. The ``Document`` to create.
                This corresponds to the ``document`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.

        Returns:
            google.ai.generativelanguage_v1alpha.types.Document:
                A Document is a collection of Chunks.
                   A Corpus can have a maximum of 10,000 Documents.

        """
        # Create or coerce a protobuf request object.
        # - Quick check: If we got a request object, we should *not* have
        #   gotten any keyword arguments that map to the request.
        has_flattened_params = any([parent, document])
        if request is not None and has_flattened_params:
            raise ValueError(
                "If the `request` argument is set, then none of "
                "the individual field arguments should be set."
            )

        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, retriever_service.CreateDocumentRequest):
            request = retriever_service.CreateDocumentRequest(request)
            # If we have keyword arguments corresponding to fields on the
            # request, apply these.
            if parent is not None:
                request.parent = parent
            if document is not None:
                request.document = document

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.create_document]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)),
        )

        # Validate the universe domain.
        self._validate_universe_domain()

        # Send the request.
        response = rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    def get_document(
        self,
        request: Optional[Union[retriever_service.GetDocumentRequest, dict]] = None,
        *,
        name: Optional[str] = None,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> retriever.Document:
        r"""Gets information about a specific ``Document``.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1alpha

            def sample_get_document():
                # Create a client
                client = generativelanguage_v1alpha.RetrieverServiceClient()

                # Initialize request argument(s)
                request = generativelanguage_v1alpha.GetDocumentRequest(
                    name="name_value",
                )

                # Make the request
                response = client.get_document(request=request)

                # Handle the response
                print(response)

        Args:
            request (Union[google.ai.generativelanguage_v1alpha.types.GetDocumentRequest, dict]):
                The request object. Request for getting information about a specific
                ``Document``.
            name (str):
                Required. The name of the ``Document`` to retrieve.
                Example: ``corpora/my-corpus-123/documents/the-doc-abc``

                This corresponds to the ``name`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.

        Returns:
            google.ai.generativelanguage_v1alpha.types.Document:
                A Document is a collection of Chunks.
                   A Corpus can have a maximum of 10,000 Documents.

        """
        # Create or coerce a protobuf request object.
        # - Quick check: If we got a request object, we should *not* have
        #   gotten any keyword arguments that map to the request.
        has_flattened_params = any([name])
        if request is not None and has_flattened_params:
            raise ValueError(
                "If the `request` argument is set, then none of "
                "the individual field arguments should be set."
            )

        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, retriever_service.GetDocumentRequest):
            request = retriever_service.GetDocumentRequest(request)
            # If we have keyword arguments corresponding to fields on the
            # request, apply these.
            if name is not None:
                request.name = name

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.get_document]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)),
        )

        # Validate the universe domain.
        self._validate_universe_domain()

        # Send the request.
        response = rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    def update_document(
        self,
        request: Optional[Union[retriever_service.UpdateDocumentRequest, dict]] = None,
        *,
        document: Optional[retriever.Document] = None,
        update_mask: Optional[field_mask_pb2.FieldMask] = None,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> retriever.Document:
        r"""Updates a ``Document``.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1alpha

            def sample_update_document():
                # Create a client
                client = generativelanguage_v1alpha.RetrieverServiceClient()

                # Initialize request argument(s)
                request = generativelanguage_v1alpha.UpdateDocumentRequest(
                )

                # Make the request
                response = client.update_document(request=request)

                # Handle the response
                print(response)

        Args:
            request (Union[google.ai.generativelanguage_v1alpha.types.UpdateDocumentRequest, dict]):
                The request object. Request to update a ``Document``.
            document (google.ai.generativelanguage_v1alpha.types.Document):
                Required. The ``Document`` to update.
                This corresponds to the ``document`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            update_mask (google.protobuf.field_mask_pb2.FieldMask):
                Required. The list of fields to update. Currently, this
                only supports updating ``display_name`` and
                ``custom_metadata``.

                This corresponds to the ``update_mask`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.

        Returns:
            google.ai.generativelanguage_v1alpha.types.Document:
                A Document is a collection of Chunks.
                   A Corpus can have a maximum of 10,000 Documents.

        """
        # Create or coerce a protobuf request object.
        # - Quick check: If we got a request object, we should *not* have
        #   gotten any keyword arguments that map to the request.
        has_flattened_params = any([document, update_mask])
        if request is not None and has_flattened_params:
            raise ValueError(
                "If the `request` argument is set, then none of "
                "the individual field arguments should be set."
            )

        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, retriever_service.UpdateDocumentRequest):
            request = retriever_service.UpdateDocumentRequest(request)
            # If we have keyword arguments corresponding to fields on the
            # request, apply these.
            if document is not None:
                request.document = document
            if update_mask is not None:
                request.update_mask = update_mask

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.update_document]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata(
                (("document.name", request.document.name),)
            ),
        )

        # Validate the universe domain.
        self._validate_universe_domain()

        # Send the request.
        response = rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    def delete_document(
        self,
        request: Optional[Union[retriever_service.DeleteDocumentRequest, dict]] = None,
        *,
        name: Optional[str] = None,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> None:
        r"""Deletes a ``Document``.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1alpha

            def sample_delete_document():
                # Create a client
                client = generativelanguage_v1alpha.RetrieverServiceClient()

                # Initialize request argument(s)
                request = generativelanguage_v1alpha.DeleteDocumentRequest(
                    name="name_value",
                )

                # Make the request
                client.delete_document(request=request)

        Args:
            request (Union[google.ai.generativelanguage_v1alpha.types.DeleteDocumentRequest, dict]):
                The request object. Request to delete a ``Document``.
            name (str):
                Required. The resource name of the ``Document`` to
                delete. Example:
                ``corpora/my-corpus-123/documents/the-doc-abc``

                This corresponds to the ``name`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.
        """
        # Create or coerce a protobuf request object.
        # - Quick check: If we got a request object, we should *not* have
        #   gotten any keyword arguments that map to the request.
        has_flattened_params = any([name])
        if request is not None and has_flattened_params:
            raise ValueError(
                "If the `request` argument is set, then none of "
                "the individual field arguments should be set."
            )

        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, retriever_service.DeleteDocumentRequest):
            request = retriever_service.DeleteDocumentRequest(request)
            # If we have keyword arguments corresponding to fields on the
            # request, apply these.
            if name is not None:
                request.name = name

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.delete_document]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)),
        )

        # Validate the universe domain.
        self._validate_universe_domain()

        # Send the request.
        rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

    def list_documents(
        self,
        request: Optional[Union[retriever_service.ListDocumentsRequest, dict]] = None,
        *,
        parent: Optional[str] = None,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> pagers.ListDocumentsPager:
        r"""Lists all ``Document``\ s in a ``Corpus``.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1alpha

            def sample_list_documents():
                # Create a client
                client = generativelanguage_v1alpha.RetrieverServiceClient()

                # Initialize request argument(s)
                request = generativelanguage_v1alpha.ListDocumentsRequest(
                    parent="parent_value",
                )

                # Make the request
                page_result = client.list_documents(request=request)

                # Handle the response
                for response in page_result:
                    print(response)

        Args:
            request (Union[google.ai.generativelanguage_v1alpha.types.ListDocumentsRequest, dict]):
                The request object. Request for listing ``Document``\ s.
            parent (str):
                Required. The name of the ``Corpus`` containing
                ``Document``\ s. Example: ``corpora/my-corpus-123``

                This corresponds to the ``parent`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.

        Returns:
            google.ai.generativelanguage_v1alpha.services.retriever_service.pagers.ListDocumentsPager:
                Response from ListDocuments containing a paginated list of Documents.
                   The Documents are sorted by ascending
                   document.create_time.

                Iterating over this object will yield results and
                resolve additional pages automatically.

        """
        # Create or coerce a protobuf request object.
        # - Quick check: If we got a request object, we should *not* have
        #   gotten any keyword arguments that map to the request.
        has_flattened_params = any([parent])
        if request is not None and has_flattened_params:
            raise ValueError(
                "If the `request` argument is set, then none of "
                "the individual field arguments should be set."
            )

        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, retriever_service.ListDocumentsRequest):
            request = retriever_service.ListDocumentsRequest(request)
            # If we have keyword arguments corresponding to fields on the
            # request, apply these.
            if parent is not None:
                request.parent = parent

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.list_documents]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)),
        )

        # Validate the universe domain.
        self._validate_universe_domain()

        # Send the request.
        response = rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # This method is paged; wrap the response in a pager, which provides
        # an `__iter__` convenience method.
        response = pagers.ListDocumentsPager(
            method=rpc,
            request=request,
            response=response,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    def query_document(
        self,
        request: Optional[Union[retriever_service.QueryDocumentRequest, dict]] = None,
        *,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> retriever_service.QueryDocumentResponse:
        r"""Performs semantic search over a ``Document``.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1alpha

            def sample_query_document():
                # Create a client
                client = generativelanguage_v1alpha.RetrieverServiceClient()

                # Initialize request argument(s)
                request = generativelanguage_v1alpha.QueryDocumentRequest(
                    name="name_value",
                    query="query_value",
                )

                # Make the request
                response = client.query_document(request=request)

                # Handle the response
                print(response)

        Args:
            request (Union[google.ai.generativelanguage_v1alpha.types.QueryDocumentRequest, dict]):
                The request object. Request for querying a ``Document``.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.

        Returns:
            google.ai.generativelanguage_v1alpha.types.QueryDocumentResponse:
                Response from QueryDocument containing a list of
                relevant chunks.

        """
        # Create or coerce a protobuf request object.
        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, retriever_service.QueryDocumentRequest):
            request = retriever_service.QueryDocumentRequest(request)

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.query_document]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)),
        )

        # Validate the universe domain.
        self._validate_universe_domain()

        # Send the request.
        response = rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    def create_chunk(
        self,
        request: Optional[Union[retriever_service.CreateChunkRequest, dict]] = None,
        *,
        parent: Optional[str] = None,
        chunk: Optional[retriever.Chunk] = None,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> retriever.Chunk:
        r"""Creates a ``Chunk``.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1alpha

            def sample_create_chunk():
                # Create a client
                client = generativelanguage_v1alpha.RetrieverServiceClient()

                # Initialize request argument(s)
                chunk = generativelanguage_v1alpha.Chunk()
                chunk.data.string_value = "string_value_value"

                request = generativelanguage_v1alpha.CreateChunkRequest(
                    parent="parent_value",
                    chunk=chunk,
                )

                # Make the request
                response = client.create_chunk(request=request)

                # Handle the response
                print(response)

        Args:
            request (Union[google.ai.generativelanguage_v1alpha.types.CreateChunkRequest, dict]):
                The request object. Request to create a ``Chunk``.
            parent (str):
                Required. The name of the ``Document`` where this
                ``Chunk`` will be created. Example:
                ``corpora/my-corpus-123/documents/the-doc-abc``

                This corresponds to the ``parent`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            chunk (google.ai.generativelanguage_v1alpha.types.Chunk):
                Required. The ``Chunk`` to create.
                This corresponds to the ``chunk`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.

        Returns:
            google.ai.generativelanguage_v1alpha.types.Chunk:
                A Chunk is a subpart of a Document that is treated as an independent unit
                   for the purposes of vector representation and
                   storage. A Corpus can have a maximum of 1 million
                   Chunks.

        """
        # Create or coerce a protobuf request object.
        # - Quick check: If we got a request object, we should *not* have
        #   gotten any keyword arguments that map to the request.
        has_flattened_params = any([parent, chunk])
        if request is not None and has_flattened_params:
            raise ValueError(
                "If the `request` argument is set, then none of "
                "the individual field arguments should be set."
            )

        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, retriever_service.CreateChunkRequest):
            request = retriever_service.CreateChunkRequest(request)
            # If we have keyword arguments corresponding to fields on the
            # request, apply these.
            if parent is not None:
                request.parent = parent
            if chunk is not None:
                request.chunk = chunk

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.create_chunk]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)),
        )

        # Validate the universe domain.
        self._validate_universe_domain()

        # Send the request.
        response = rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    def batch_create_chunks(
        self,
        request: Optional[
            Union[retriever_service.BatchCreateChunksRequest, dict]
        ] = None,
        *,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> retriever_service.BatchCreateChunksResponse:
        r"""Batch create ``Chunk``\ s.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1alpha

            def sample_batch_create_chunks():
                # Create a client
                client = generativelanguage_v1alpha.RetrieverServiceClient()

                # Initialize request argument(s)
                requests = generativelanguage_v1alpha.CreateChunkRequest()
                requests.parent = "parent_value"
                requests.chunk.data.string_value = "string_value_value"

                request = generativelanguage_v1alpha.BatchCreateChunksRequest(
                    requests=requests,
                )

                # Make the request
                response = client.batch_create_chunks(request=request)

                # Handle the response
                print(response)

        Args:
            request (Union[google.ai.generativelanguage_v1alpha.types.BatchCreateChunksRequest, dict]):
                The request object. Request to batch create ``Chunk``\ s.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.

        Returns:
            google.ai.generativelanguage_v1alpha.types.BatchCreateChunksResponse:
                Response from BatchCreateChunks containing a list of
                created Chunks.

        """
        # Create or coerce a protobuf request object.
        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, retriever_service.BatchCreateChunksRequest):
            request = retriever_service.BatchCreateChunksRequest(request)

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.batch_create_chunks]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)),
        )

        # Validate the universe domain.
        self._validate_universe_domain()

        # Send the request.
        response = rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    def get_chunk(
        self,
        request: Optional[Union[retriever_service.GetChunkRequest, dict]] = None,
        *,
        name: Optional[str] = None,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> retriever.Chunk:
        r"""Gets information about a specific ``Chunk``.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1alpha

            def sample_get_chunk():
                # Create a client
                client = generativelanguage_v1alpha.RetrieverServiceClient()

                # Initialize request argument(s)
                request = generativelanguage_v1alpha.GetChunkRequest(
                    name="name_value",
                )

                # Make the request
                response = client.get_chunk(request=request)

                # Handle the response
                print(response)

        Args:
            request (Union[google.ai.generativelanguage_v1alpha.types.GetChunkRequest, dict]):
                The request object. Request for getting information about a specific
                ``Chunk``.
            name (str):
                Required. The name of the ``Chunk`` to retrieve.
                Example:
                ``corpora/my-corpus-123/documents/the-doc-abc/chunks/some-chunk``

                This corresponds to the ``name`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.

        Returns:
            google.ai.generativelanguage_v1alpha.types.Chunk:
                A Chunk is a subpart of a Document that is treated as an independent unit
                   for the purposes of vector representation and
                   storage. A Corpus can have a maximum of 1 million
                   Chunks.

        """
        # Create or coerce a protobuf request object.
        # - Quick check: If we got a request object, we should *not* have
        #   gotten any keyword arguments that map to the request.
        has_flattened_params = any([name])
        if request is not None and has_flattened_params:
            raise ValueError(
                "If the `request` argument is set, then none of "
                "the individual field arguments should be set."
            )

        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, retriever_service.GetChunkRequest):
            request = retriever_service.GetChunkRequest(request)
            # If we have keyword arguments corresponding to fields on the
            # request, apply these.
            if name is not None:
                request.name = name

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.get_chunk]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)),
        )

        # Validate the universe domain.
        self._validate_universe_domain()

        # Send the request.
        response = rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    def update_chunk(
        self,
        request: Optional[Union[retriever_service.UpdateChunkRequest, dict]] = None,
        *,
        chunk: Optional[retriever.Chunk] = None,
        update_mask: Optional[field_mask_pb2.FieldMask] = None,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> retriever.Chunk:
        r"""Updates a ``Chunk``.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1alpha

            def sample_update_chunk():
                # Create a client
                client = generativelanguage_v1alpha.RetrieverServiceClient()

                # Initialize request argument(s)
                chunk = generativelanguage_v1alpha.Chunk()
                chunk.data.string_value = "string_value_value"

                request = generativelanguage_v1alpha.UpdateChunkRequest(
                    chunk=chunk,
                )

                # Make the request
                response = client.update_chunk(request=request)

                # Handle the response
                print(response)

        Args:
            request (Union[google.ai.generativelanguage_v1alpha.types.UpdateChunkRequest, dict]):
                The request object. Request to update a ``Chunk``.
            chunk (google.ai.generativelanguage_v1alpha.types.Chunk):
                Required. The ``Chunk`` to update.
                This corresponds to the ``chunk`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            update_mask (google.protobuf.field_mask_pb2.FieldMask):
                Required. The list of fields to update. Currently, this
                only supports updating ``custom_metadata`` and ``data``.

                This corresponds to the ``update_mask`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.

        Returns:
            google.ai.generativelanguage_v1alpha.types.Chunk:
                A Chunk is a subpart of a Document that is treated as an independent unit
                   for the purposes of vector representation and
                   storage. A Corpus can have a maximum of 1 million
                   Chunks.

        """
        # Create or coerce a protobuf request object.
        # - Quick check: If we got a request object, we should *not* have
        #   gotten any keyword arguments that map to the request.
        has_flattened_params = any([chunk, update_mask])
        if request is not None and has_flattened_params:
            raise ValueError(
                "If the `request` argument is set, then none of "
                "the individual field arguments should be set."
            )

        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, retriever_service.UpdateChunkRequest):
            request = retriever_service.UpdateChunkRequest(request)
            # If we have keyword arguments corresponding to fields on the
            # request, apply these.
            if chunk is not None:
                request.chunk = chunk
            if update_mask is not None:
                request.update_mask = update_mask

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.update_chunk]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata(
                (("chunk.name", request.chunk.name),)
            ),
        )

        # Validate the universe domain.
        self._validate_universe_domain()

        # Send the request.
        response = rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    def batch_update_chunks(
        self,
        request: Optional[
            Union[retriever_service.BatchUpdateChunksRequest, dict]
        ] = None,
        *,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> retriever_service.BatchUpdateChunksResponse:
        r"""Batch update ``Chunk``\ s.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1alpha

            def sample_batch_update_chunks():
                # Create a client
                client = generativelanguage_v1alpha.RetrieverServiceClient()

                # Initialize request argument(s)
                requests = generativelanguage_v1alpha.UpdateChunkRequest()
                requests.chunk.data.string_value = "string_value_value"

                request = generativelanguage_v1alpha.BatchUpdateChunksRequest(
                    requests=requests,
                )

                # Make the request
                response = client.batch_update_chunks(request=request)

                # Handle the response
                print(response)

        Args:
            request (Union[google.ai.generativelanguage_v1alpha.types.BatchUpdateChunksRequest, dict]):
                The request object. Request to batch update ``Chunk``\ s.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.

        Returns:
            google.ai.generativelanguage_v1alpha.types.BatchUpdateChunksResponse:
                Response from BatchUpdateChunks containing a list of
                updated Chunks.

        """
        # Create or coerce a protobuf request object.
        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, retriever_service.BatchUpdateChunksRequest):
            request = retriever_service.BatchUpdateChunksRequest(request)

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.batch_update_chunks]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)),
        )

        # Validate the universe domain.
        self._validate_universe_domain()

        # Send the request.
        response = rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    def delete_chunk(
        self,
        request: Optional[Union[retriever_service.DeleteChunkRequest, dict]] = None,
        *,
        name: Optional[str] = None,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> None:
        r"""Deletes a ``Chunk``.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1alpha

            def sample_delete_chunk():
                # Create a client
                client = generativelanguage_v1alpha.RetrieverServiceClient()

                # Initialize request argument(s)
                request = generativelanguage_v1alpha.DeleteChunkRequest(
                    name="name_value",
                )

                # Make the request
                client.delete_chunk(request=request)

        Args:
            request (Union[google.ai.generativelanguage_v1alpha.types.DeleteChunkRequest, dict]):
                The request object. Request to delete a ``Chunk``.
            name (str):
                Required. The resource name of the ``Chunk`` to delete.
                Example:
                ``corpora/my-corpus-123/documents/the-doc-abc/chunks/some-chunk``

                This corresponds to the ``name`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.
        """
        # Create or coerce a protobuf request object.
        # - Quick check: If we got a request object, we should *not* have
        #   gotten any keyword arguments that map to the request.
        has_flattened_params = any([name])
        if request is not None and has_flattened_params:
            raise ValueError(
                "If the `request` argument is set, then none of "
                "the individual field arguments should be set."
            )

        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, retriever_service.DeleteChunkRequest):
            request = retriever_service.DeleteChunkRequest(request)
            # If we have keyword arguments corresponding to fields on the
            # request, apply these.
            if name is not None:
                request.name = name

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.delete_chunk]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)),
        )

        # Validate the universe domain.
        self._validate_universe_domain()

        # Send the request.
        rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

    def batch_delete_chunks(
        self,
        request: Optional[
            Union[retriever_service.BatchDeleteChunksRequest, dict]
        ] = None,
        *,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> None:
        r"""Batch delete ``Chunk``\ s.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1alpha

            def sample_batch_delete_chunks():
                # Create a client
                client = generativelanguage_v1alpha.RetrieverServiceClient()

                # Initialize request argument(s)
                requests = generativelanguage_v1alpha.DeleteChunkRequest()
                requests.name = "name_value"

                request = generativelanguage_v1alpha.BatchDeleteChunksRequest(
                    requests=requests,
                )

                # Make the request
                client.batch_delete_chunks(request=request)

        Args:
            request (Union[google.ai.generativelanguage_v1alpha.types.BatchDeleteChunksRequest, dict]):
                The request object. Request to batch delete ``Chunk``\ s.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.
        """
        # Create or coerce a protobuf request object.
        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, retriever_service.BatchDeleteChunksRequest):
            request = retriever_service.BatchDeleteChunksRequest(request)

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.batch_delete_chunks]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)),
        )

        # Validate the universe domain.
        self._validate_universe_domain()

        # Send the request.
        rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

    def list_chunks(
        self,
        request: Optional[Union[retriever_service.ListChunksRequest, dict]] = None,
        *,
        parent: Optional[str] = None,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> pagers.ListChunksPager:
        r"""Lists all ``Chunk``\ s in a ``Document``.

        .. code-block:: python

            # This snippet has been automatically generated and should be regarded as a
            # code template only.
            # It will require modifications to work:
            # - It may require correct/in-range values for request initialization.
            # - It may require specifying regional endpoints when creating the service
            #   client as shown in:
            #   https://googleapis.dev/python/google-api-core/latest/client_options.html
            from google.ai import generativelanguage_v1alpha

            def sample_list_chunks():
                # Create a client
                client = generativelanguage_v1alpha.RetrieverServiceClient()

                # Initialize request argument(s)
                request = generativelanguage_v1alpha.ListChunksRequest(
                    parent="parent_value",
                )

                # Make the request
                page_result = client.list_chunks(request=request)

                # Handle the response
                for response in page_result:
                    print(response)

        Args:
            request (Union[google.ai.generativelanguage_v1alpha.types.ListChunksRequest, dict]):
                The request object. Request for listing ``Chunk``\ s.
            parent (str):
                Required. The name of the ``Document`` containing
                ``Chunk``\ s. Example:
                ``corpora/my-corpus-123/documents/the-doc-abc``

                This corresponds to the ``parent`` field
                on the ``request`` instance; if ``request`` is provided, this
                should not be set.
            retry (google.api_core.retry.Retry): Designation of what errors, if any,
                should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.

        Returns:
            google.ai.generativelanguage_v1alpha.services.retriever_service.pagers.ListChunksPager:
                Response from ListChunks containing a paginated list of Chunks.
                   The Chunks are sorted by ascending chunk.create_time.

                Iterating over this object will yield results and
                resolve additional pages automatically.

        """
        # Create or coerce a protobuf request object.
        # - Quick check: If we got a request object, we should *not* have
        #   gotten any keyword arguments that map to the request.
        has_flattened_params = any([parent])
        if request is not None and has_flattened_params:
            raise ValueError(
                "If the `request` argument is set, then none of "
                "the individual field arguments should be set."
            )

        # - Use the request object if provided (there's no risk of modifying the input as
        #   there are no flattened fields), or create one.
        if not isinstance(request, retriever_service.ListChunksRequest):
            request = retriever_service.ListChunksRequest(request)
            # If we have keyword arguments corresponding to fields on the
            # request, apply these.
            if parent is not None:
                request.parent = parent

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.list_chunks]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("parent", request.parent),)),
        )

        # Validate the universe domain.
        self._validate_universe_domain()

        # Send the request.
        response = rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # This method is paged; wrap the response in a pager, which provides
        # an `__iter__` convenience method.
        response = pagers.ListChunksPager(
            method=rpc,
            request=request,
            response=response,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    def __enter__(self) -> "RetrieverServiceClient":
        return self

    def __exit__(self, type, value, traceback):
        """Releases underlying transport's resources.

        .. warning::
            ONLY use as a context manager if the transport is NOT shared
            with other clients! Exiting the with block will CLOSE the transport
            and may cause errors in other clients!
        """
        self.transport.close()

    def list_operations(
        self,
        request: Optional[operations_pb2.ListOperationsRequest] = None,
        *,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> operations_pb2.ListOperationsResponse:
        r"""Lists operations that match the specified filter in the request.

        Args:
            request (:class:`~.operations_pb2.ListOperationsRequest`):
                The request object. Request message for
                `ListOperations` method.
            retry (google.api_core.retry.Retry): Designation of what errors,
                    if any, should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.
        Returns:
            ~.operations_pb2.ListOperationsResponse:
                Response message for ``ListOperations`` method.
        """
        # Create or coerce a protobuf request object.
        # The request isn't a proto-plus wrapped type,
        # so it must be constructed via keyword expansion.
        if isinstance(request, dict):
            request = operations_pb2.ListOperationsRequest(**request)

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.list_operations]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)),
        )

        # Validate the universe domain.
        self._validate_universe_domain()

        # Send the request.
        response = rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response

    def get_operation(
        self,
        request: Optional[operations_pb2.GetOperationRequest] = None,
        *,
        retry: OptionalRetry = gapic_v1.method.DEFAULT,
        timeout: Union[float, object] = gapic_v1.method.DEFAULT,
        metadata: Sequence[Tuple[str, Union[str, bytes]]] = (),
    ) -> operations_pb2.Operation:
        r"""Gets the latest state of a long-running operation.

        Args:
            request (:class:`~.operations_pb2.GetOperationRequest`):
                The request object. Request message for
                `GetOperation` method.
            retry (google.api_core.retry.Retry): Designation of what errors,
                    if any, should be retried.
            timeout (float): The timeout for this request.
            metadata (Sequence[Tuple[str, Union[str, bytes]]]): Key/value pairs which should be
                sent along with the request as metadata. Normally, each value must be of type `str`,
                but for metadata keys ending with the suffix `-bin`, the corresponding values must
                be of type `bytes`.
        Returns:
            ~.operations_pb2.Operation:
                An ``Operation`` object.
        """
        # Create or coerce a protobuf request object.
        # The request isn't a proto-plus wrapped type,
        # so it must be constructed via keyword expansion.
        if isinstance(request, dict):
            request = operations_pb2.GetOperationRequest(**request)

        # Wrap the RPC method; this adds retry and timeout information,
        # and friendly error handling.
        rpc = self._transport._wrapped_methods[self._transport.get_operation]

        # Certain fields should be provided within the metadata header;
        # add these here.
        metadata = tuple(metadata) + (
            gapic_v1.routing_header.to_grpc_metadata((("name", request.name),)),
        )

        # Validate the universe domain.
        self._validate_universe_domain()

        # Send the request.
        response = rpc(
            request,
            retry=retry,
            timeout=timeout,
            metadata=metadata,
        )

        # Done; return the response.
        return response


DEFAULT_CLIENT_INFO = gapic_v1.client_info.ClientInfo(
    gapic_version=package_version.__version__
)


__all__ = ("RetrieverServiceClient",)
